Skip to main content

Advertisement

Log in

Biomass-Cover Relationship for Eelgrass Meadows

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

An Erratum to this article was published on 26 February 2016

Abstract

Eelgrass meadows play key roles in coastal ecosystems, and the extent of the standing biomass is focal to address ecosystem functioning. Eelgrass cover is commonly assessed in marine monitoring programs while biomass sampling is destructive and expensive. Therefore, we have proposed a functional relationship that translates eelgrass cover into aboveground biomass using site-specific information on Secchi depth or light attenuation. The relationship was estimated by non-linear regression on 791 combined observations of eelgrass cover and biomass from eight different coastal sites in Denmark. Eelgrass biomass initially increased with cover and flattened out as cover exceeded 40–50 % due to increased self-shading. Decreasing light energy with depth reduced the eelgrass biomass potential (assessed at 100 % cover), and this reduction was stronger for coastal sites with lower water transparency. Moreover, the biomass potential varied seasonally from around 110–140 g DW m−2 in spring months to a peak of 241 g DW m−2 in August, consistent with other seasonal studies. The model explained 56 % of the variation in log-transformed biomasses, but significant variation between coastal sites still remained, deviating between −23 and 39 % from the mean relationship. These site-specific deviations could be due to differences in losses related to grazing, drifting algae and epiphytes, better light capture by dense canopies, as well as differences in how well light conditions within eelgrass meadows are represented by actual measurements of Secchi depth and light attenuation. The relationship can be employed to estimate eelgrass biomass of entire coastal ecosystems from observations of eelgrass cover and depth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Carstensen, J. 2010. Censored data regression: statistical methods for analyzing Secchi transparency in shallow systems. Limnology & Oceanography: Methods 8: 376–385.

    Article  Google Scholar 

  • Carstensen, J., D.J. Conley, J.H. Andersen, and G. Ærtebjerg. 2006. Coastal eutrophication and trend reversal: a Danish case study. Limnology & Oceanography 51: 398–408.

    Article  Google Scholar 

  • Cebrián, J., C.M. Duarte, N. Marbà, and S. Enriquez. 1997. Magnitude and fate of the production of four co-occurring western Mediterranean seagrass species. Marine Ecology Progress Series 155: 29–44.

    Article  Google Scholar 

  • Clausen, K.K., P. Clausen, C.C. Faelled, and K.N. Mouritsen. 2012. Energetic consequences of a major change in habitat use: endangered Brent geese Branta bernicla hrota losing their main food resource. Ibis 154: 803–814.

    Article  Google Scholar 

  • Clausen, K.K., D. Krause-Jensen, B. Olesen, and N. Marbà. 2014. Seasonality of eelgrass biomass across gradients in temperature and latitude. Marine Ecology Progress Series 506: 71–85.

    Article  Google Scholar 

  • Duarte, C.M. 1991. Seagrass depth limits. Aquatic Botany 40: 363–377.

    Article  Google Scholar 

  • Duarte, C.M., and C.L. Chiscano. 1999. Seagrass biomass and production: a reassessment. Aquatic Botany 65: 159–174.

    Article  Google Scholar 

  • Duarte, C.M., N. Marbà, D. Krause-Jensen, and M. Sánchez-Camacho. 2007. Testing the predictive power of seagrass depth limit models. Estuaries and Coasts 30: 652–656.

    Article  Google Scholar 

  • Duarte, C.M., I.J. Losada, I.E. Hendriks, I. Mazarrasa, and N. Marbà. 2013. The role of coastal plant communities for climate change mitigation and adaptation. Nature Climate Change 3: 961–968.

    Article  CAS  Google Scholar 

  • Fourqurean, J.W., C.M. Duarte, H. Kennedy, N. Marbà, M. Holmer, M.A. Mateo, E.T. Apostolaki, G.A. Kendrick, D. Krause-Jensen, K.J. McGlathery, and O. Serrano. 2012. Seagrass ecosystems as a globally significant carbon stock. Nature Geoscience 5: 505–509.

    Article  CAS  Google Scholar 

  • Gallegos, C.L., P.J. Werdell, and C.R. McClain. 2011. Long‐term changes in light scattering in Chesapeake Bay inferred from Secchi depth, light attenuation, and remote sensing measurements. Journal of Geophysical Research 116: C00H08. doi:10.1029/2011JC007160.

    Article  Google Scholar 

  • Gutiérrez, J.L., C.G. Jones, J.E. Byers, K.K. Arkema, K. Berkenbusch, J.A. Commito, C.M. Duarte, S.D. Hacker, J.G. Lambrinos, I.E. Hendriks, P.J. Hogarth, M.G. Palomo, and C. Wild. 2011. Physical ecosystem engineers and the functioning of estuaries and coasts. Treatise on Estuarine and Coastal Science 7: 53–81.

    Article  Google Scholar 

  • Hemminga, M.A., and C.M. Duarte. 2000. Seagrass ecology. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Koch, E.M. 2001. Beyond light: physical, geological, and geochemical parameters as possible submersed aquatic vegetation habitat requirements. Estuaries 24: 1–17.

    Article  Google Scholar 

  • Koenings, J.P., and J.A. Edmundson. 1991. Secchi disk and photometer estimates of light regimes in Alaskan lakes—effects of yellow color and turbidity. Limnology & Oceanography 36: 91–105.

    Article  Google Scholar 

  • Krause-Jensen, D., A.L. Middelboe, K. Sand-Jensen, and P.B. Christensen. 2000. Eelgrass, Zostera marina, growth along depth gradients: upper boundaries of the variation as a powerful predictive tool. Oikos 91: 233–244.

    Article  Google Scholar 

  • Krause-Jensen, D., M.F. Pedersen, and C. Jensen. 2003. Regulation of eelgrass (Zostera marina) cover along depth gradients in Danish coastal waters. Estuaries 26: 866–877.

    Article  Google Scholar 

  • Krause-Jensen, D., J. Carstensen, S.L. Nielsen, T. Dalsgaard, P.B. Christensen, H. Fossing, and M.B. Rasmussen. 2011. Sea bottom characteristics affect depth limits of eelgrass Zostera marina. Marine Ecology Progress Series 425: 91–102.

    Article  Google Scholar 

  • Marbá, N., D. Krause-Jensen, T. Alcoverro, S. Birk, A. Pedersen, J.M. Neto, S. Orfanidis, J.M. Garmendia, I. Muxika, A. Borja, K. Dencheva, and C.M. Duarte. 2013. Diversity of European seagrass indicators—patterns within and across regions. Hydrobiologia 704: 265–278. doi:10.1007/s10750-012-1403-7.

    Article  Google Scholar 

  • McGlathery, K.J., L.K. Reynolds, L.W. Cole, R.J. Orth, S.R. Marion, and A. Schwarzschild. 2012. Recovery trajectories during state change from bare sediment to eelgrass dominance. Marine Ecology Progress Series 448: 209–221.

    Article  Google Scholar 

  • Neckles, H.A., B.S. Kopp, B.J. Peterson, and P.S. Pooler. 2012. Integrating scales of seagrass monitoring to meet conservation needs. Estuaries and Coasts 35: 23–46. doi:10.1007/s12237-011-9410-x.

    Article  Google Scholar 

  • Nielsen, S.L., K. Sand-Jensen, J. Borum, and O. Geertz-Hansen. 2002. Depth colonization of eelgrass (Zostera marina) and macroalgaeas determined by water transparency in Danish coastal waters. Estuaries 25: 1025–1032.

    Article  Google Scholar 

  • Olesen, B. 1996. Regulation of light attenuation and eelgrass Zostera marina depth distribution in a Danish embayment. Marine Ecology Progress Series 134: 187–194.

    Article  Google Scholar 

  • Olesen, B., and K. Sand-Jensen. 1994. Biomass-density patterns in the temperate seagrass Zostera marina. Marine Ecology Progress Series 109: 283–291.

    Article  Google Scholar 

  • Pedersen, M.F., and J. Borum. 1993. An annual nitrogen budget for a seagrass Zostera marina population. Marine Ecology Progress Series 101: 169–169.

    Article  Google Scholar 

  • Pedersen, T.M., K. Sand-Jensen, S. Markager, and S.L. Nielsen. 2014. Optical changes in a eutrophic estuary during reduced nutrient loadings. Estuaries and Coasts 37: 880–892. doi:10.1007/s12237-013-9732-y.

    Article  CAS  Google Scholar 

  • Platt, T., and A.D. Jassby. 1976. The relationship between photosynthesis and light for natural assemblages of coastal marine phytoplankton. Journal of Phycology 12: 421–430.

    Google Scholar 

  • Plummer, M.L., C.J. Harvey, L.E. Anderson, A.D. Guerry, and M.H. Ruckelshaus. 2013. The role of eelgrass in marine community interactions and ecosystem services: results from ecosystem-scale food web models. Ecosystems 16: 237–251. doi:10.1007/s10021-012-9609-0.

    Article  Google Scholar 

  • Rasmussen, J.R., M.F. Pedersen, B. Olesen, S.L. Nielsen, and T.M. Pedersen. 2013. Temporal and spatial dynamics of ephemeral drift-algae in eelgrass, Zostera marina, beds. Estuarine Coastal Shelf Science 119: 167–175.

    Article  Google Scholar 

  • Rasmussen, J.R., K. Dromph, C. Göke, and D. Krause-Jensen. 2015. Reduced cover of drifting macroalgae following nutrient reduction in Danish coastal waters. Estuaries and Coasts. doi:10.1007/s12237-014-9904-4.

    Google Scholar 

  • Riisgård, H.U., P.B. Christensen, N.J. Olesen, J.K. Petersen, M.M. Møller, and P. Andersen. 1995. Biological structure in a shallow cove (Kertinge Nor, Denmark)—control by benthic nutrient fluxes and suspension-feeding ascidians and jellyfish. Ophelia 41: 329–344.

    Article  Google Scholar 

  • Sand-Jensen, K. 1975. Biomass, net production and growth dynamics in an eelgrass (Zostera marina L.) population in Vellerup Vig, Denmark. Ophelia 14: 185–201.

    Article  Google Scholar 

  • Sand-Jensen, K., and J. Borum. 1991. Interactions among phytoplankton, periphyton, and macrophytes in temperate freshwaters and estuaries. Aquatic Botany 41: 137–175.

    Article  Google Scholar 

  • Sand-Jensen, K., T. Binzer, and A.L. Middelboe. 2007. Scaling of photosynthetic production of aquatic macrophytes—a review. Oikos 116: 280–294. doi:10.1111/j.2006.0030-1299.15093.x.

    CAS  Google Scholar 

  • van der Heide, T., E.H. van Nes, M.M. van Katwijk, H. Olff, and A.J.P. Smolders. 2011. Positive feedbacks in seagrass ecosystems—evidence from large-scale empirical data. PLoS ONE 6(1): e16504. doi:10.1371/journal.pone.0016504.

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to Nikolaj Holmboe, Steen Schwaerter, Jens Sund Laursen, Mikael Hjort Jensen, and Martha Laursen from the local departments of the Danish Nature Agency for their help on providing data and background information on eelgrass in the various coastal areas. We thank three anonymous reviewers and the associate editor for their constructive comments that improved the manuscript. The study received support from the Danish Nature Agency, the DEVOTES project funded under the EC 7th framework program (grant agreement no. 308392) and the COCOA project under the BONUS research program funded by the EC and the Danish Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacob Carstensen.

Additional information

Communicated by Alberto Vieira Borges

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(JPEG 1156 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carstensen, J., Krause-Jensen, D. & Balsby, T.J.S. Biomass-Cover Relationship for Eelgrass Meadows. Estuaries and Coasts 39, 440–450 (2016). https://doi.org/10.1007/s12237-015-9995-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-015-9995-6

Keywords

Navigation